If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+7^2=10^2
We move all terms to the left:
x^2+7^2-(10^2)=0
We add all the numbers together, and all the variables
x^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $
| 4r−8=4 | | 75x+3=6(x-3) | | 2x+6(3x-7)+5x+3=61 | | 9q^2+4=0 | | 5(2m-4)=10m-20 | | -10x/5=-6 | | -5p+9+6p=18 | | 21=-7(x-2) | | -1.2y+2.5=0.8y+0.5 | | 225(x-1)(x-1)-64=0 | | 2(3n+-)=28 | | 19n-13n=4.5 | | 8x+14=8x+17 | | 1.)x-5=61 | | 6a-14+2a=-2a-7+10a-7 | | 1.25x+2=8 | | 3x=2=x-2 | | 3(2x1)-5=3x+10 | | 11t-4.5t=6.5 | | 3(2x-4)=5x+12+x | | 12m-4=38 | | 7x+13=63 | | 20-7z=-5z+2 | | 14x-24=60 | | 6+8d=5d-24 | | 11.5+2h=8.5 | | 7x+10(-5)=13 | | r/4=52 | | 15−9b=–8b | | -5d+8d-1=11 | | −1/4(4/5x+4)=4 | | 3x+15=48 |